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%o = u(4) a I., 
vw 

= VW P + i - DO, 
% (“1 E wtl (9 

are valid. The most difficult part of the proof of assertion 8.9 is the proof of the foil- 
owing property of the pair lr+uW, v=mv~o)]: 

where gr is the point where the trajectory goes onto the common boundary@, of regi- 

ons D(,) and &@s while #a is the point where the trajectory returns to this boundary. 
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Necessary conditions are presented for the optimality of a certain guaranteed 

time (upper layer time Cl]) for a large class of pursuit problems. Sufficient 

conditions of a general form have been cited in Cl-51 and in a number of other 
papers for the possibility of terminating the pursuit at a specified time and the 
guarantee time effectively computed. Sufficient optimality conditions for gua- 
rantee times have been discussed in [S-8]. 

1. Suppose that a linear pursuit problem in an n-dimensional Euclidean space 8 is 
described: 

a) by linear vector differential equations 

i = cz -u+v W 

where c is a constant n th - order square matrix, u = ts (t) E P and v = v (t) E v 
are vector-valued functions, measurable for t > 0 , called the controls of the players 

(the pursuer and pursued respectively); P c R and Q c R are convex compacta; 
b) by a terminal set ~~representabie in the form M = M, + W,, where &a is a 

linear subspace of space a. and W, is some compact convex set in a subspace L 
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which is the orthogonal complement of IV, in R . 
We denote the orthogonal projection operator onto L by 3~ , the dimension L by v, 

and the unit sphere in L by K. We assume that v > Z. The aim of the pursuer is to 

bring the point z onto the set AI, while the pursued player seeks to prevent this. We 

say that the pursuit can be terminated in a time t (2s) from the point z,,* if for an arbi- 

trary control v (t) of the pursued player. the pursuer can construct his own control a (t) 

so that the point z hits onto the set AIin a time not exceeding t (~a); the values of 

2 (a), u (s) (t - e<s < t, e > 0) are used for finding the value of parameter u (t) 

at each instant t . 

2, Consider the mapping h: K + L of the sphere K into space L, possessing the 

following properties: 
a) the mapping h is a smooth homeomorphism, 

b) every vector cp E Kis normal to the surface H = h (K) at the point h (cp). 
Let tpo be an arbitrary point of sphere K and let s = (9, . . . . 9) be a local coordinate 
system in its neighborhood with origin 0 at the point (pa, so that tp = cp (s) E 

= cp (9 ,...P). By t& (8) we denote the vecton cp1 (8) = &J (s)/ 8s (,I = 2, . . . . v). 

Definition. The surfacea = h (R) , corresponding to the mapping h or spnere 

K into L, is said to be locally convex if h possesses properties (a) and (b) and, further- 
more, if at each point cp, E K there is a positive-definite quadratic form with coeff- 
icients 

Lemma 1. Let the surface H = h (K), corresponding to the mapping h of sphere 
K into L, be locally convex. Then there exist constants C, < + mand Ca > I) 

such that the inequalities 

are fulfilled for all Cp, 9 E K. 

We do not prove here, for lack of space, Lemma 1 as well as Lemma 2. We remark 
that from inequalities (2) it follows, in particular, that the surface H = h (K) is the 

boundary of some convex body W in L with a support function (9-h (cp) ), so that for a 
point z E L to belong to W it is necessary and sufficient that the inequality (cp*[h (cP)- 
- 4) > 0 hold for all sp E K 

3. We assume that the following conditions have been fulfilled for problem (1). 
Condition 1. For any r > 0 and any vector q~ E K there exist unique vectors 

U (r, cp) E P and u (T, cp) E (1 yielding the maximum of the following scalar 
products: 

(q.e%), 24 E P, (cp-e%), 27 E Q 

The surfaces ne% (r, K) and WcV (r, H) are locally convex; the mappings 

n (r, Cp) and U (r, (p) are smooth mappings from (0, + oa) x: K into R. 
Condition 2. For any cp E K there exists a unique vector to, (cp) E W,, yield- 

ing the maximum of the expression 
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(9. woh wo E Hg 

and either the surface 2” = U’s (K) is locally convex or the set wa consists of the 
single point 0. In the tatter case we set uto (cp) z 0, cp E K. 

Suppose that Conditions 1 and 2 have been fulfilled for problem (1). Let t be an 
arbitrary nonnegative number. We construct a mapping of sphere K into L 

iv (4 0) = wo (cp) + J me [u (r, 0) - IJ (r9 cp)l dr (3) 
0 

For an arbiaary positive t this mapping is, generally speaking, neither one-to-one 
nor regular. By XL = W (t, K) we denote the image of sphere K under mapping (3). 
It is easy to see that the vector Cp is the normal to surface z* at the point W (t, q).We 

assume the fulfillment of the following 

Condition 3. The surface C’ is locally convex for each t > 0 . 
Lemma 2. Suppose that Conditions 1 - 3 have been fulfilled for problem (1). Then 

there exist continuous positive functions 0 (r) <t and c it), defined on the interval 

(0, f XJ) , such that the inequality 

is fulfilled for all t > 09 9 E R9 V, E R. 

4, Let z be an arbitrary point of space R. The point, corresponding to it in L of 
the curve net% can be, for some value t,, of parameter t. captured by an “expanding” 

convex body W {t)whose boundary is the locally convex surface 2’ = w (t, K). The 

function W(t, cp) is continuous in t, qEl0, + oo) >( K.Therefore. there exists a 
smalkst nonnegative value of parameter t (let us call it T (2)) for which the inclusion 

Jrer=z E TV (t) (4) 
holds. obviously. 

~LGT (GCZ E ZT (2) 

and conscquentjr there exists a vector cp (I) E Ksuch that 

zteT@)% = IV (T (z), q (2)) 

If, however, the point net% lies outside the body 1V (t) for any t > 0. we say that 
r’ (2) = + m. 

Theorem 1. Suppose that Conditions 1 - 3 have been fulfilled for problem (1). 

Then, if the point z,, E R is such that 0 < T (z,,) - To < + 30, then the punuit 
can be terminated in time PO from the point a, 

This theorem can be easily proved by the pian in @] by reduction to Theorem 1 of 

[l]. However, its proof ia subsumed in the proof of Theorem 2 following below. 

& For alI f > 0 and 2 E H we define the continuous function (see 81) 
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X (2, t) = rns ([W (t, $) - netcz] - 9,) 

In correspondence to what we said in Sect. 2. in order for inclusion (4) to hold it is 

necessary and sufficient to fulfill the inequality L (2, 1) > 0. Note that if z @ MY then 
h (z, 0) < 0, so that the number T (z) is nothing else but the first positive root of the 

equation h (Z, 1) = 0. 
Theorem 2. Suppose that Conditions 1 - shave been fulfilled for problem (1). 

Let z, E Rhe such that 0 < To = T (zo) < + 30. Then in order for the time To 

to be optimal, it is necessary that the inequality (cpO = 0 (~a)) 

I(L.I)fI(CfC(zI-_SrCiy(T~-r,~p)- v(T,-r,q+,)] dr), r)(O 
0 

be fuIfiUed for all t E (0, T,) and 7 E (0, r, - t) . 
We cury out the proof by contradiction. Suppose that the time Ta is optimal and 

that te E (0, Z’J and re E (0, TI - t,)are such that 
. 

1 Ooc z.1 = &I > 0 (5) 
We set 

b. = min & (t), co = min c (t), t E IQ, To1 

(6 (t) and c (t) are the functions given by Lemma 2) and we choose A > 0 and a posi- 
tive integer .* such that a = t,!N <’ 6,.We assume that the pursuer constructs a sequ- 
ence 8, = @ < E, < 6s < -*. of instants of choosing the control and inductively 

determines his own control on each of the semi-intervals LU, t,), lel, Q, . . . in the 
following manner. At the initial instant i! =E 0 the pursuer chooses e, = A and on the 

semi-interval LO, eJ sets his own control equal to u (t) 3 12 (1’0 - t, Cpo). After this 
the .pursued player, in the course of time, gives his own control U (t) on 10, El).Moving 
in correspondence with these controls, the point z (t) goes from the initial position 2, 
to some position 2 (El). 

Now suppose that both the pursuer and the pursued player have constructed their own 

controls on each of the semi-intervals LU, EJ, . . . . (Q_~, et) (k > 1) and let Z (t)be 
the motion of point Z corresponding to these controls. Then, the pursuer chooses ak+l 

from the following considerations: ek+l = &L + 8 (T lz (e&if k > N (or if k < 
< fl but 9’ (z (ek)) < 7,); e k+l = al, + A if k < A’ and 1’ (z (Q)) 5 r,.Having 
chosen t&J, he sets his own control on the semi-interval k&, e!,,,) equal to u (t) 3 u 

(2’ lz (ek)l - (t - ek)c cp Iz t&k)])* After this the pursued player chooses his 
own control u (t)on this same semi-interval, and the point z goes to a new position 

Z (ek,,). In correspondence with the given inductive prescription for choosing the purs- 
uer’s control, each of the pursued player’s control v (t), 0 ,( t S To uniquely deter- 
mines the corresponding motion z (t) 0 < I < To (z (0) = z. of point z . It turns 

c? out that whatever be the pursued player’s control L’ (t), 0 < t . ?', the following 
alternative holds for z (t) : for any positive integer k > 1, either T (Z (Q)) = 0 i.e., 

2 (EC) E M) or 
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0 < T (2 (d) < T (2 bk-1)) - (ek - ek-I) < + 00 (6) 

whence it follows immediately (see [3]) that from the point 2s the pursuit can be term- 
inated in a time no later than T, = T (zo). 

Let us prove the alternative for k = 1. It is identical for k > i . We have 

A 

z @lJ = t (A) = e AC 

c J 
20 - e-C [I4 (To - r p Qo) - u WI dr 

0 J 
. 

Thcrefbrc, for any 9 E Kwe obtain, after simple manipulations, 
‘1’ 

(%P (To - A, 9) - ne(Tra)C z (A)]) = (9. ([Vo.rp)- [ 
Trs(TI) 

nL’Cs(r,O)dr]- 

T* 

- 
[ 

w (To, Qo) - 
s 

Tu-NT.) 
N-.,,,O~~r]])+(~.T~~~~fc~~~r,*~- 

-u(r,Qo)ldr)+(O. j ncrC[a(r,9)-v(~0-_)jdt )O 

=,-A 1 

Here the first term is nonnegative by virtue of Lemma 2. the second, by virtue of 
Condition 1 and of inequality (2), and the third, by virtue of the definition of ” (r, $9. 

Thus 

M(T’-A)C I (A) E I+’ (I’,- A) 

and, consequently, 2’ (z(e&) 6 To - 81. e e. d. 
The time To is optimal. Therefore, we can find a sequence of controls 4 (81, 0 i= 

& S S 1’s such that for the trajectories zt (s), 0 & S < To (ai (0) = Zg) correspond- 
ing to them (in the above-mentioned sense), me point Zt (S) does not belong to .&f for 

all 

SE &To-+1 
[ 

(i=1,2,...;A,=min A,“-~-To)) 
i 

The inequality 

T (z:i (eik)) > To - 8+k - ho/i (0 < k \( N, i = 1.2, . . .) (7) 

is obviously fulfilled for the trajectories zi (s),where Eik are the instants, determined 

by the ui (s) (0 < s < To) , of choosing the pursuer’s control (otherwise. in corresp- 

ondence with Theorem 1, a time no greater thanT (zl (etr)) is left upto the end of the 

pursuit fiOfll @ltZ; (au)Uid, COllS~qUelltl~, the &IX T (Z1 (eik)) + eik < To- 

-_ A& is taken for the whole pursuit, which contradicts the definition of zi (s)). From 
inequality (7). by an induction on k,it follows easily that 

8ik _ =kA (k=i ,..., N, i-:1,2 . . . . 1 V4 

We introduce the notation 

Tk = T,, - kA, zf (kA) = Zfk, T bfk) = Tfkv ‘T bfk) = qfk 

(0 4 k< N, 1 = 1, 2, . .) 
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From inequalities (6)- (8) follows 

lim l’*k = I’l, 
i-Dm 

(k =o, 1, . . ., N) (9) 

Let us prove that the relations 

(k = 0, i, . . ., N) (W 

limz ik=FLAC(Io-~~r~[U(~o-TI~o)-Y(TO-I,~o)}dl)(k~o,...,N) 
0 

also hold W 

We prove equalities (10). (11) by induction on k. For k = 0 they are trivial because 

cFt0= f&,, zto E zo. Suppose that relations (lo). (11) are valid for some k 6 N - 1. We 
prove they also hold for k + i. By virtue of the Cauchy formula 

AC ’ 
A 

'tk+l = ’ t J Zik - I? 4c [u (z’~- s, qtk) - ui (kh + 41 ds 
0 

for any* E K we have 

($.[W (T,, -A, 9) - stee(T’)rA)C~. &+rl)= (% ([w(Ttk*s@)- ‘s nc’% (r, *) dr 1 c 
Tik-A 

Hence, by virtue of Lemma 2, Condition 1, and the definition of u(r, 9) , we obtain 

(9’ Lw cTtk - A, q) _ jre(Tfk-A)C 
Zik+ll) aaO(+ [$- qkl) (14) 

Let us now assume that equality (10) is not fulfilled for k + 1 , i.e., that there exists 
a subsequence {in);, such that 

Then, by going to the limit in the equality 

neTfnk+lC 
'ink+1 = W(Ti,k+lv %,k+d P) 

and by using the continuity of W (t, (p) and the formulas (9). (15). we obtain 

lim 516 
‘i,k+lC 

Zink+l = w tTk+l, P*) 
n-0 

On the other hand (by virtue of the uniform boundedness of I zik I with respect to r, k 

and of equality (9)) since 

liru (scc~GI~+~ ’ zink+r - Iu(Tbk-A’c zak+r) = 0 
-00 (17) 

by passing to the limit in inequality (14) with respect to the subsequence {i,,) and by 
using the continuity of w(t, 9) and formulas (9) (10) (for A) , we obtain 
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The function u(r, q)ir unifocmly continuous an Ir,, T,I x li” 1 therefore, 

Taking the relations (12), [$), (10). (11) (for k), (I’J), (20) 'Ento arxaunt, we obtain 
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Equality (11) is proved. 
Whenk= X equality (11) takes the form 

8. 
lb zi (to) = efoc (zo - J e-“C [u (To - s, %I) - 2: (To - $7 crpo)l4 
i+ca 

0 

Then, by virtue of the continuity of the function 33. (z, t) and of formula (5), 

1 @i (to)* z*) > A&! > 0 

for all sufficiently large i. Hence T (zt (t,)) < z,,.This contradicts formula (9). 
Theorem 2 is proved. 

The author is grateful to E. F. Mishchenko for his guidance. 
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