$$
u_{(\rho)}=u^{(4)}=u^{\bullet}, \quad v_{(\eta)}=v(4)=+1=p^{\circ}, \quad D_{(\eta)}(w) \in W_{0}(w)
$$

are valid. The most difficult part of the proof of assertion 8.9 is the proof of the following property of the pair $[u \neq u(4), v=v(10)]$:

$$
T_{(7)}^{1}\left(g_{1}\right)<T_{(7)}^{1}(g s)
$$

where g_{1} is the point where the trajectory goes onto the common boundary $G_{(9)}$ of regions $D_{(s)}$ and $D_{(00)}$ while f_{s} is the point where the t rajectory returns to this bolundary.

BIBLIOGRAPHY

1. Isaacs, R., Differential Games. Moscow, "Mir", 1967.
2. Krasovskii, N. N., Game Problems of the Contact of Motions. Moscow, "Nauka", 1970.
3. Pontriagin, L.S., On the theory of differential games. Uspekhi Mat. Nauk Vol. $21, \mathrm{No}_{4} 4,1966$.
4. Pozharitskii, G. K., Impulsive tracking in the case of second-order monotype linear objects. PMM VoL. 30, No. 5, 1966.
5. Pozharitskii, G.K., On the problem of encounter in second-order systems with impulsive and nonparallel controls. PMM Vol. 34, No. 2, 1970.
6. Appel', P., Theoretical Mechanics. Moscow, Fizmatgiz, 1960.

Translated by N, H.C.

NECESSART OPTMMALITY CONDITIONS IN A LINEAR PURSUIT PROBLEM

PMM Vol. 35, ${ }^{\text {P5 5, 1971, pp. 811-818 }}$
P.B. GUSIATNIKOV
(Moscow)
(Received March 15, 1971)

Necessary conditions are presented for the optimality of a certain guaranteed time (upper layer time [1]) for a large class of pursuit problems. Sufficient conditions of a general form have been cited in $[1-5]$ and in a number of other papers for the possibility of terminating the pursuit at a specified time and the guarantee time effectively computed. Sufficient optimality conditions for guarantee times have been discussed in [6-8].

1. Suppose that a linear pursuit problem in an n-dimensional Euclidean space R is described:
a) by linear vector differential equations

$$
\begin{equation*}
\dot{z}=C z-u+v \tag{1}
\end{equation*}
$$

where C^{\prime} is a constant nth - order square matrix, $u=u(t) \in P$ and $v=v(t) \in \dot{Q}$ are vector-valued functions, measurable for $t \geqslant 0$, called the controls of the players (the pursuer and pursued respectively); $P \subset R$ and $Q \subset R$ are convex compacta;
b) by a terminal set M representable in the form $M=M_{0}+W_{0}$, where M_{n} is a linear subspace of space H. and W_{0} is some compact convex set in a subspace L
which is the orthogonal complement of M_{0} in R.
We denote the orthogonal projection operator onto L by π, the dimension L by v, and the unit sphere in L by K. We assume that $v \geqslant 2$. The aim of the pursuer is to bring the point z onto the set M, while the pursued player seeks to prevent this. We say that the pursuit can be terminated in a time $t\left(z_{0}\right)$ from the point $z_{0} \cdot$ if for an arbitrary control $v(t)$ of the pursued player, the pursuer can construct his own control $\boldsymbol{u}(t)$ so that the point z hits onto the set M in a time not exceeding $t\left(z_{0}\right)$; the values of $z(s), v(s)(t-\varepsilon \leqslant s \leqslant t, \varepsilon>0)$ are used for finding the value of parameter $u(t)$ at each instant t.
2. Consider the mapping $h: K \rightarrow L$ of the sphere K into space L, possessing the following properties:
a) the mapping h is a smooth homeomorphism,
b) every vector $\varphi \in K$ is normal to the surface $H=h(K)$ at the point $h(\varphi)$. Let φ_{0} be an arbitrary point of sphere K and let $s=\left(s^{2}, \ldots, s^{v}\right)$ be a local coordinate system in its neighborhood with origin 0 at the point φ_{0}, so that $\varphi=\varphi(s)=$ $=\varphi\left(s^{2}, \ldots, s^{\nu}\right)$. By $\varphi_{j}(s)$ we denote the vectors $\varphi_{j}(s)=\partial \varphi(s) / \partial s(j=2, \ldots, v)$.

Definition. The surface $H=h(K)$, corresponding to the mapping h of sphere K into L, is said to be locally convex if h possesses properties (a) and (b) and, furthermore, if at each point $\varphi_{0} \in K$ there is a positive-definite quadratic form with coefficients

$$
h_{i j}\left(\varphi_{0}\right)=\left(\varphi_{i}(0) \cdot \frac{\partial h(\varphi(0))}{\partial s^{j}}\right)(i, j=2, \ldots, v)
$$

Lemma 1. Let the surface $H=h(K)$, corresponding to the mapping h of sphere K into L, be locally convex. Then there exist constants $C_{1}<+\infty$ and $C_{2}>0$ such that the inequalities

$$
\begin{gathered}
\left(\varphi \cdot[(h(\varphi)-h(\psi)]) \leqslant C_{1}(\varphi \cdot[\varphi-\psi])\right. \\
(\varphi \cdot[h(\varphi)-h(\psi)]) \geqslant C_{2}(\varphi \cdot[(\varphi-\psi]) \geqslant 0
\end{gathered}
$$

are fulfilled for all $\varphi, \psi \in K$.
We do not prove here, for lack of space, Lemma 1 as well as Lemma 2. We remark that from inequalities (2) it follows, in particular, that the surface $H=h(K)$ is the boundary of some convex body W in L with a support function ($\varphi \cdot h(\varphi)$), so that for a point $x \in L$ to belong to W it is necessary and sufficient that the inequality ($\varphi \cdot[h(\varphi)-$ $-x]) \geqslant 0$ hold for all $\varphi \in K$
3. We assume that the following conditions have been fulfilled for problem (1). Condition 1. For any $r>0$ and any vector $\varphi \in K$ there exist unique vectors $u(r, \varphi) \in P$ and $v(r, \varphi) \in Q$ yielding the maximum of the following scalar products:

$$
\left(\varphi \cdot e^{r c} u\right), \quad u \in P, \quad\left(\varphi \cdot e^{r c} v\right), \quad v \in Q
$$

The surfaces $\pi e^{r C_{u}} u(r, K)$ and $\pi e^{r C} v(r, K)$ are locally convex; the mappings $u(r, \varphi)$ and $v(r, \varphi)$ are smooth mappings from $(0,+\infty) \times K$ into R.

Condition 2. For any $\varphi \in K$ there exists a unique vector $w_{0}(\varphi) \in W_{0}$ yielding the maximum of the expression

$$
\left(\varphi \cdot w_{0}\right), \quad w_{0} \in W_{0}
$$

and either the surface $\Sigma^{\circ}=w_{0}(K)$ is locally convex or the set W_{0} consists of the single point 0 . In the tatter case we set $u_{0}(\varphi) \equiv 0, \varphi \in K$.

Suppose that Conditions 1 and 2 have been fulfilled for problem (1). Let t be an arbitrary nonnegative number. We construct a mapping of sphere K into L

$$
\begin{equation*}
W(t, \varphi)=w_{0}(\varphi)+\int_{0}^{t} \pi e^{r c}[u(r, \varphi)-v(r, \varphi)] d r \tag{3}
\end{equation*}
$$

For an arbitrary positive t this mapping is, generally speaking, neither one-to-one nor regular. By $\Sigma^{t}=W(t, K)$ we denote the image of sphere K under mapping (3). It is easy to see that the vector φ is the normal to surface Σ^{t} at the point $W(t, \varphi)$. We assume the fulfillment of the following
Condition 3. The surface $\boldsymbol{\Sigma}^{t}$ is locally convex for each $t>0$.
Lemma 2. Suppose that Conditions $1-3$ have been fulfilled for problem (1). Then there exist continuous positive functions $\partial(t) \leqslant t$ and $c(t)$. defined on the interval $(0,+\infty)$, such that the inequality

$$
\begin{gathered}
\left(\psi \cdot\left\{\left[W(t, \psi)-\int_{t-\delta(t)}^{t} \pi e^{r c} u(r, \psi) d r\right]-\left[W(t, \varphi)-\int_{t-\delta(t)}^{t} \pi e^{r c_{u}}(r, \varphi) d r\right]\right\}\right) \geqslant \\
\geqslant c(t)(\psi \cdot[\psi-\varphi])
\end{gathered}
$$

is fulfilled for all $t>U, \psi \in K, \varphi \in K$.
4. Let z be an arbitrary point of space R. The point, corresponding to it in L of the curve $\pi e^{t C_{z}}$ can be, for some value t_{0} of parameter t. captured by an "expanding" convex body $W(t)$ whose boundary is the locally convex surface $\Sigma^{t}=W(t, K)$. The function $W(t, \varphi)$ is continuous in $t, \varphi \in(0,+\infty) \times K$. Therefore, there exists a smallest nonnegative value of parameter t (let us call it $T(z)$) for which the inclusion

$$
\begin{equation*}
\pi e^{t C_{z}} \in W(t) \tag{4}
\end{equation*}
$$

holds. Obviously,

$$
\pi e^{T(z) C_{z}} \in \Sigma^{T(z)}
$$

and consequently there exists a vector $\varphi(z) \in K$ such that

$$
\pi e^{T(z) C_{z}}=W(T(z), \varphi(z))
$$

If, however, the point $\pi e^{t} C_{z}$ lies outside the body $W(t)$ for any $t \geqslant 0$. we say that $I(z)=+\infty$.

Theorem 1. Suppose that Conditions $1-3$ have been fulfilled for problem (1)Then, if the point $z_{0} \in R$ is such that $0<T\left(z_{0}\right)=T_{0}<+\infty$, then the pursuit can be terminated in time T_{0} from the point z_{0}

This theorem can be easily proved by the plan in [2] by reduction to Theorem 1 of [1]. However, its proof is subsumed in the proof of Theorem 2 following below.
5. For all $t \geqslant 0$ and $z \in R$ we define the continuous function (see [3])

$$
\lambda(z, t)=\min _{\psi \in K}\left(\left[W(t, \psi)-\pi e^{t C_{z}}\right] \cdot \psi\right)
$$

In correspondence to what we said in Sect. 2, in order for inclusion (4) to hold it is necessary and sufficient to fulfill the inequality $\lambda(z, t) \geqslant 0$. Note that if $z \notin M$, then $\lambda(z, 0)<0$, so that the number $T(z)$ is nothing else but the first positive root of the equation $\lambda(z, t)=0$.

Theorem 2. Suppose that Conditions $1-3$ have been fulfilled for problem (1). Let $z_{0} \in R$ be such that $0<T_{0}=T\left(z_{0}\right)<+\infty$. Then in order for the time T_{0} to be optimal, it is necessary that the inequality ($\varphi_{0}=\varphi\left(z_{0}\right)$)

$$
I(t, \tau)=\lambda\left(e^{t c}\left(z_{0}-\int_{0}^{1} e^{-r c}\left[u\left(T_{0}-r, \varphi_{0}\right)-v\left(T_{0}-r, \varphi_{0}\right)\right] d r\right), \tau\right) \leqslant 0
$$

be fulfilled for all $t \in\left(0, T_{0}\right)$ and $\tau \in\left(0, T_{0}-t\right)$.
We carry out the proof by contradiction. Suppose that the time T_{0} is optimal and that $t_{0} \in\left(0, T_{0}\right)$ and $r_{0} \in\left(0, T_{0}-t_{0}\right)$ are such that

We set

$$
\begin{equation*}
I\left(t_{0}, \tau_{0}\right)=\lambda_{0}>0 \tag{5}
\end{equation*}
$$

$$
\delta_{0}=\min \delta(t), \quad c_{0}=\min c(t), \quad t \in\left[\begin{array}{ll}
\tau_{0} & T_{0}
\end{array}\right]
$$

($\delta(t)$ and $c(t)$ are the functions given by Lemma 2) and we choose $\Delta>0$ and a positive integer N such that $\Delta=t_{0}!N<\delta_{0}$. We assume that the pursuer constructs a sequence $\varepsilon_{0}=0<\varepsilon_{1}<\varepsilon_{2}<\ldots$ ot instants of choosing the control and inductively determines his own control un each of the semi-intervals $\left(U, \varepsilon_{1}\right),\left(\varepsilon_{1}, \varepsilon_{2}\right), \ldots$ in the following manner. At the initial instant $t=0$ the pursuer chooses $\varepsilon_{1}=\Delta$ and on the semi-interval $\left[0, \varepsilon_{1}\right)$ sets his own control equal to $u(t) \equiv u\left(T_{0}-t, \varphi_{0}\right)$. After this the pursued player, in the course of time, gives his own control $v(t)$ on $\left.\mathbb{I O}, \varepsilon_{1}\right)$. Moving in correspondence with these controls, the point $\tilde{z}(t)$ goes from the initial position z_{0} to some position $2\left(\varepsilon_{1}\right)$.

Now suppose that both the pursuer and the pursued player have constructed their own controls on each of the semi-intervals $\left(U, \varepsilon_{1}\right), \ldots,\left(\varepsilon_{k-1}, \varepsilon_{k}\right)(k \geqslant 1)$ and let $z(t)$ be the motion of point 2 corresponding to these controls. Then, the pursuer chooses ε_{k+1} from the following considerations: $\varepsilon_{k+1}=\varepsilon_{k}+\delta\left(T\left[z\left(\varepsilon_{k}\right)\right]\right.$, if $k \geqslant N$ (or if $k<$ $<N$ but $\left.T^{\prime}\left(z\left(\varepsilon_{k}\right)\right)<\tau_{0}\right) ; \varepsilon_{k+1}=\varepsilon_{k}+\Delta$ if $k<N$ and $T\left(z\left(\varepsilon_{k}\right)\right)>\tau_{0}$. Having chosen ε_{k+1}, he sets his own control on the semi-interval $\left(\varepsilon_{k}, \varepsilon_{i+1}\right)$ equal to $u(t) \equiv u$ $\left(T\left\lfloor z\left(\varepsilon_{k}\right)\right]-\left(t-\varepsilon_{k}\right)_{,} \varphi\left[z\left(\varepsilon_{k}\right)\right]\right)$. After this the pursued player chooses his own control $v(t)$ on this same semi-interval, and the point z goes to a new position $z\left(\varepsilon_{k+1}\right)$. In correspondence with the given inductive prescription for choosing the pursuer's control, each of the pursued player's control $v(t), 0 \leqslant t \leqslant T_{0}$ uniquely determines the corresponding motion $z(t) \quad 0 \leqslant t \leqslant T_{0}\left(z(0)=z_{0}\right)$ of point z. It turns out that whatever be the pursued player's control $v(t), 0 \leqslant t \leqslant T_{0}$ the following alternative holds for $z(t):$ for any positive integer $k \geqslant 1$, either $T\left(2\left(\varepsilon_{k}\right)\right)=0$ i. e. . $\left.2\left(\varepsilon_{k}\right) \in M\right)$ or

$$
\begin{equation*}
0<T\left(z\left(e_{k}\right)\right) \leqslant T\left(z\left(\varepsilon_{k-1}\right)\right)-\left(e_{k}-\varepsilon_{k-1}\right)<+\infty \tag{6}
\end{equation*}
$$

whence it follows immediately (see [3]) that from the point z_{0} the pursuit can be terminated in a time no later than $T_{0}=T\left(z_{0}\right)$.

Let us prove the alternative for $k=1$. It is identical for $k>1$. We have

$$
z\left(z_{1}\right)=z(\Delta)=e^{\Delta C}\left(z_{0}-\int_{0}^{\Delta} e^{-r C}\left[u\left(T_{0}-r, \varphi_{0}\right)-v(r)\right] d r\right) .
$$

Therefore, for any $\psi \in K$ we obtain, after simple manipulations,

$$
\begin{gathered}
\left(\psi \cdot\left[W\left(T_{0}-\Delta, \psi\right)-\pi e^{\left(T_{\sigma}-\Delta\right) C} z(\Delta)\right]\right)=\left(\psi \cdot \left\{\left[W\left(T_{0}, \psi\right)-\int_{\substack{T_{\sigma} \\
T_{0}\left(T_{0}\right)}}^{T_{0}} \pi e^{r C} u(r, \psi) d r\right]-\right.\right. \\
\left.\left.-\left[W\left(T_{0}, \varphi_{0}\right)-\int_{T_{0}-\delta\left(T_{0}\right)}^{T_{0}} \pi e^{r C_{0}} u\left(r, \varphi_{0}\right) d r\right]\right\}\right)+\left(\psi \cdot \int_{T_{\sigma}-\delta\left(T_{0}\right)}^{T_{0}} \pi e^{r C}[u(r, \psi)-\right. \\
\left.\left.-u\left(r, \varphi_{0}\right)\right] d r\right)+\left(\psi \cdot \int_{T_{\sigma}-\Delta}^{T_{0}} \pi e^{r C}\left[v(r, \psi)-v\left(T_{0}-r\right)\right] d r\right) \geqslant 0
\end{gathered}
$$

Here the first term is nonnegative by virtue of Lemma 2, the second, by virtue of Condition 1 and of inequality (2), and the third, by virtue of the definition of $v(r, \psi)$. Thus

$$
\pi e^{\left(T_{0}-\Delta\right) C_{z}(\Delta) \in W\left(T_{0}-\Delta\right)}
$$

and, consequently, $T\left(z\left(\varepsilon_{1}\right)\right) \leqslant T_{0}-\varepsilon_{1}, q_{0}$ e. $d_{\text {. }}$
The time T_{0} is optimal. Therefore, we can find a sequence of controls $v_{i}(s), 0 \leqslant$ $\leqslant s \leqslant T_{0}$ such that for the trajectories $z_{i}(s), U \leqslant s \leqslant T_{0}\left(z_{i}(0)=z_{0}\right)$ corresponding to them (in the above-mentioned sense), the point $z_{i}(s)$ does not belong to M for all

$$
s \in\left[0, T_{0}-\frac{\Delta_{0}}{i}\right\rceil \quad\left(i=1,2, \ldots ; \Delta_{0}=\min \left\{\Delta, \frac{T_{0}-t_{n}-\tau_{n}}{2}\right\}\right)
$$

The inequality

$$
\begin{equation*}
T\left(Z_{i}\left(\varepsilon_{i k}\right)\right) \geqslant T_{0}-\varepsilon_{i k}-\Delta_{0} / i \quad(0 \leqslant k \leqslant N, i=1,2, \ldots) \tag{7}
\end{equation*}
$$

is obviously fulfilled for the trajectories $z_{i}(s)$, where $\varepsilon_{i k}$ are the instants, determined by the $v_{i}(s)\left(0 \leqslant s \leqslant T_{0}\right)$, of choosing the pursuer's control (othcrwise, in correspondence with Theorem 1 , a time no greater than $T\left(z_{i}\left(\varepsilon_{i k}\right)\right)$ is left upto the end of the pursuit from point $z_{i}\left(\varepsilon_{i k}\right)$ and, consequently, the time $T\left(z_{i}\left(\varepsilon_{i k}\right)\right)+\varepsilon_{i k}<T_{0}-$ - Δ_{0} / i is taken for the whole pursuit, which contradicts the definition of $\left.z_{i}(s)\right)$. From inequality (7), by an induction on k, it follows easily that

$$
\begin{equation*}
\varepsilon_{i k} \equiv k \Delta \quad(k=1, \ldots, N, \quad i=1,2, \ldots) \tag{8}
\end{equation*}
$$

We introduce the notation

$$
\begin{gathered}
T_{k}=T_{0}-k \Delta, \quad z_{i}(k \Delta)=z_{i k}, \quad T\left(z_{i k}\right)=T_{i k}, \varphi\left(z_{i k}\right)=\varphi_{i k} \\
(0 \leqslant k \leqslant N, i=1,2, \ldots)
\end{gathered}
$$

From inequalities (6)-(8) follows

$$
\begin{equation*}
\lim _{i \rightarrow \infty} I_{i k}=T_{k} \quad(k=0,1, \ldots, N) \tag{9}
\end{equation*}
$$

Let us prove that the relations

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \varphi_{i k}=\varphi_{0} \quad(k=0,1, \ldots, N) \tag{10}
\end{equation*}
$$

$\lim _{i \rightarrow \infty} z_{i k}=e^{k \Delta C}\left(z_{0}-\int_{0}^{k \Delta} e^{-r c}\left[u\left(T_{0}-r, \varphi_{0}\right)-v\left(T_{0}-r, \varphi_{0}\right)\right] d r\right)(k=0, \ldots, N)$
also hold
We prove equalities (10), (11) by induction on k. For $k=0$ they are trivial because $\varphi_{i 0} \equiv \varphi_{0}, z_{i 0} \equiv z_{0}$. Suppose that relations (10), (11) are valid for some $k<N-1$. We prove they also hold for $k+1$. By virtue of the Cauchy formula

$$
\begin{equation*}
z_{i k+1}=e^{\Delta C}\left(z_{i k}-\int_{0}^{\Delta} e^{-s C}\left[u\left(T_{i k}-s, \varphi_{i k}\right)-v_{i}(k \Delta+s)\right] d s\right) \tag{12}
\end{equation*}
$$

for any $\psi \in K$ we have
$\left(\psi \cdot\left[W\left(T_{i k}-\Delta, \psi\right)-\pi e^{\left(T_{i k}-\Delta\right) C_{z_{i k+1}}}\right]\right)=\left(\psi \cdot\left\{\left[W\left(T_{i k}, \psi\right)-\int_{T_{i k}-\Delta}^{T_{i k}} \pi e^{r C_{u}(r, \psi) d r}\right]-\right.\right.$ $\left.\left.-\left[W\left(T_{i k}, \varphi_{i k}\right)-\int_{T_{i k}-\Delta}^{T_{i k}} \pi e^{r C_{u}}\left(r, \varphi_{i k}\right) d r\right]\right\}\right)+\left(\psi \cdot \int_{T_{i k}-\Delta}^{T_{i k}} \pi e^{r C}\left[v(r, \psi)-v_{i}\left(T_{i k}+k \Delta-r\right)\right] d r\right)$

Hence, by virtue of Lemma 2, Condition 1, and the definition of $\psi(r, \phi)$, we obtain

$$
\begin{equation*}
\left(\psi \cdot\left[W\left(T_{i k}-\Delta, \psi\right)-\pi e^{\left(T_{i k}-\Delta\right) C} z_{i k+1}\right]\right) \geqslant \sigma_{0}\left(\psi \cdot\left[\psi-\varphi_{i k}\right]\right) \tag{14}
\end{equation*}
$$

Let us now assume that equality (10) is not fulfilled for $k+1, \mathrm{i}_{\mathrm{o}} \mathrm{e}_{\mathrm{o}}$, that there exists a subsequence $\left\{i_{n}\right\}_{n=1}^{0}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi_{i_{n} k+1}=\varphi^{*} \neq \varphi_{\bullet} \tag{15}
\end{equation*}
$$

Then, by going to the limit in the equality

$$
\begin{equation*}
\pi e^{T_{i_{n}}{ }^{k+1} C_{i_{i_{n}} k+1}}=W\left(T_{i_{n} k+1}, \varphi_{i_{n} k+1}\right) \tag{16}
\end{equation*}
$$

and by using the continuity of $W(t, \varphi)$ and the formulas (9), (15), we obtain

$$
\lim _{n \rightarrow \infty} \pi e^{T_{i_{n} k+1} c} z_{i_{n} k+1}=W\left(T_{k+1}, \Phi^{*}\right)
$$

On the other hand (by virtue of the uniform boundedness of $\left|z_{i k}\right|$ with respect to i, k and of equality (9)), since

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\pi e^{T_{i_{n} k+1} C} z_{i_{n} k+1}-\pi e^{\left(T_{i_{n}} k^{-\Delta) C}\right.} z_{i_{n} k+1}\right)=0 \tag{17}
\end{equation*}
$$

by passing to the limit in inequality (14) with respect to the subsequence $\left\{i_{n}\right\}$ and by using the continuity of $W(t, \varphi)$ and formulas (9), (10) (for k), we obtain

$$
\left(\Phi\left[W\left(T_{k+1}, \varphi\right)-W\left(T_{k+1} ; \varphi^{*}\right)\right] \geqslant c_{0}\left(\psi \cdot\left[\psi-\varphi_{0}\right]\right)\right.
$$

The latter is incorrect foz $\psi=\varphi^{*}$. This contradiction proves equality (10).
Further, from relation (13), Lemma 2, and the definition of $v(r, \psi)$, for $\psi=4$ " we have

$$
\begin{gathered}
0 \leqslant\left(\varphi_{0} \cdot \int_{r_{i k}-\Delta}^{T_{i k}} \pi e^{r c}\left[v\left(r, \varphi_{0}\right)-v_{i}\left(T_{i k}+k \Delta-r\right)\right] d r\right) \leqslant \\
\leqslant\left(\varphi _ { 0 } \cdot \left[W\left(T_{i k}-\Delta, \varphi_{0}\right)-\pi e^{\left.\left.\left(T_{i k}-\Delta\right) c_{i_{i k+1}}\right]\right)}\right.\right.
\end{gathered}
$$

Going to the umit in formula (16) with $i_{n} \equiv n$ and using relations (9), (10), we obtain, keept ing equality (17) in mind, that

$$
\lim _{i \rightarrow \infty} x e^{\left(T_{i k}-\Delta\right) C_{x_{i n+1}}=W\left(T_{i+1}, \varphi_{0}\right)}
$$

Hence

$$
\begin{equation*}
\lim _{\rightarrow \rightarrow \infty}\left(\varphi_{e} \int_{T_{i z}-\Delta}^{T_{i k}} e^{r c}\left[v\left(r, \varphi_{0}\right)-v_{i}\left(T_{i k}+k \Delta-r\right)\right] d r\right)=0 \tag{18}
\end{equation*}
$$

By virtue of Filippov's theorem [10] there exists a measurable function $v^{*}(s) \in Q, T_{k+1} \leqslant$ $\leqslant: \leqslant T_{y}$, such that

From formula (18) and the definition of the function $v\left(r, \varphi_{D}\right)$ we then have that $c\left(r . \varphi_{0}\right.$) $\equiv r^{*}(r)$ and
$\lim _{i \rightarrow \infty} \int_{0}^{\frac{1}{2}} e^{-s C} v_{i}(k \Delta+s) d s=e^{-T_{k} C} \int_{T_{k+1}}^{T_{k}} e^{r e} v\left(r, \varphi_{0}\right) d r=\int_{0}^{\Delta} e^{-s C} v\left(T_{0}-k j-s, \varphi_{0}\right) d s$

The function $u(r, q)$ is uniformly continuous on $\left|\tau_{0}, T_{0}\right| \times \mathcal{K}$, therefore,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \int_{i}^{4} e^{-3 C} u\left(T_{i k}-s, T_{i k}\right) d s=\int_{0}^{4} e^{-3 C_{u}}\left(T_{0}-k \Delta-s, F_{n}\right) d s \tag{20}
\end{equation*}
$$

Taking the relations (12), (9), (10), (11) (for k), (19), (20) into account, we obtain

$$
\begin{aligned}
& \left.\lim _{z \rightarrow \infty} z_{i x+1}=e^{\Delta C}\left(e^{k \Delta C}\left(z_{0}-\int_{0}^{k \Delta} e^{-\omega C} \mid u\left(T_{a}-s . q_{0}\right)-r\left(T_{0}-\cdots, q_{0}\right)\right\} d s\right)\right)- \\
& -e^{\Delta C} \int_{0}^{\Delta} e^{-s C} u\left(T_{0}-k \Delta-s, \varphi_{0}\right) d s+e^{3 C} \int_{0}^{A} e^{-s C} s\left(T_{n}-A \Delta-5 . \varphi_{0}\right) d s= \\
& =e^{(k+1) \Delta C}\left(z 0-\int_{0}^{(k+1) \Delta} e^{-* C}\left[\mu\left(T_{a}-s, \varphi_{n}\right)-v\left(T_{1}-s, \varphi_{(1)}\right) / 4\right)\right.
\end{aligned}
$$

Equality (11) is proved.
When $k=N$ equality (11) takes the form

$$
\lim _{i \rightarrow \infty} z_{i}\left(t_{0}\right)=e^{t_{0} c}\left(z_{0}-\int_{0}^{t_{0}} e^{-s} c\left[u\left(T_{0}-s, \varphi_{0}\right)-v\left(T_{0}-s, \varphi_{0}\right)\right] d s\right)
$$

Then, by virtue of the continuity of the function $\lambda(z, t)$ and of formula (5),

$$
\lambda\left(z_{i}\left(t_{0}\right), \tau_{0}\right)>\lambda_{0} / 2>0
$$

for all sufficiently large i. Hence $T\left(z_{i}\left(t_{0}\right)\right)<\tau_{0}$. This contradicts formula (9). Theorem 2 is proved.

The author is grateful to E. F. Mishchenko for his guidance.

BIBLIOGRAPHY

1. Pontriagin, L. S., On the theory of differential games. Uspekhi Mat Nauk Vol. 21, No. 4, 1966.
2. Mishchenko, E.F. and Pontriagin, L. S. . Linear differential games. Dokl. Akad. Nauk SSSR Vol.174, N1, 1967.
3. Pshenichnyi, B. N., Linear differential games. Avtomatika i Telemekhanika N1, 1968.
4. Pshenichnyi, B. N. . The structure of differential games, Dokl, Akad. Nauk SSSR Vol, 184, N2, 1969.
5. Krasovskii, N. N. and Subbotin, A. I., Extremal strategies in differential games. Dokl. Akad. Nauk SSSR Vol. 196, Ne2, 1971.
6. Krasovskii, N. N. and Subbotin, A. I. . Optimal strategies in a linear differential game. PMM Vol, 33, Ne4, 1969.
7. Gusiatnikov, P.B. and Nikol'skii, M. S., On the optimality of pursuit time. Dokl. Akad. Nauk SSSR Vol. 184, Ne3, 1969.
8. Gusiatnikov, P.B. and Nikol'skii, M.S. On the problem of the optimality of pursuit time. In: Theory of Optimal Solutions. Proc. Seminar, Ne3, Kiev, 1968.
9. Gusiatnikov, P.B., On the structure of differential games. In: Mathematical Methods of Investigation and the Optimization of Systems. N³. Kiev, 1970.
10. Filippov, A.F., On certain questions in the theory of optimal control. Vesth. Moskovsk. Gos. Univ., Ser. Mat. i Mekh., N2, 1959.
